cent silica gel sheets; acetone as developing solvent) to contain a further alkaloid having R_f 0.57 (R_f alstonisidine 0.49; R_f alstonisine 0.66). The new component was purified by preparative TLC (E. Merck silica gel plates) and crystallization from methanol to give macralstonine (IV), m.p. 276-278°, of identical u.v., i.r., NMR, and mass spectra, and optical rotation to those of authentic material.

Phytochemistry, 1971, Vol. 10, pp. 439 to 440. Pergamon Press. Printed in England.

ALKALOIDS OF HAZUNTA MODESTA

G. FERRARI and O. FERVIDI
Simes S.p.A., Lab. Ricerche Chimiche, Milano, Italy

and

M. Ferrari

Istituto di Chimica Organica dell'Università di Milano, Italy

(Received 20 April 1970)

Plant. Hazunta modesta (Bak.). Pichon (Syn. Tabernaemontana modesta Bak.). Source. Madagascar.

Previous work. From branches and stem bark of sister species *H. velutina* were isolated vobasine, tabernaemontanine, dregamine, voacarpine, hazuntine and hazuntinine.¹

Examined part. Roots, extracted with EtOH until exhaustion. The alkaloids were dissolved from dry extract in 5% citric acid, the bases set free with aqueous ammonia, extr. with CHCl₃ and chromatographed on a neutral Al₂O₃ column. Ibogamine, tabernaemontanine (eluted with C_6H_6) and dregamine [eluted with C_6H_6 -ether (7:3)] were identified. Total alkaloids constituted 2.5 per cent of weight of the dry roots.

Ibogamine. $C_{19}H_{24}N_2$ —Found: m.p. 155-7° (MeOH); $[a]_D - 36^\circ$ (C = 1, CHCl₃). Required; m.p. 162-3°; $^2[a]_D - 36\cdot4^\circ$ (CHCl₃); i.r., u.v. and m.s. were in full accordance with those reported for authentic ibogamine. NMR spectrum (in CDCl₃) provided further confirmation of proposed identification. It showed peaks between $\tau 2\cdot5$ and 3 (5 indole

- * M.ps are uncorrected.
- ¹ P. POTIER, A. M. BUI, B. C. DAS, J. LE MEN and P. BOITEAU, Ann. Pharm. Franc. 26, 621 (1968),
- ² D. F. DICKEL, C. L. HOLDEN, R. C. MAXFIELD, L. E. PASZEK and W. I. TAYLOR, J. Am. Chem. Soc. 80, 123 (1958).
- ³ M. GOUTAREL, M. M. JANOT, F. METHYS and V. PRELOG, Helv. Chim. Acta 39, 742 (1956).
- 4 N. Neuss, Ed. Lilly Collection of Physical Data of Indole and Dihydroindole Alkaloids, Lilly Res. Lab., Indianapolis, Ind. Dec. (1963).
- ⁵ K. BIEMANN and M. FRIEDMANN-SPITELLER, J. Am. Chem. Soc. 83, 4805 (1961).

protons), between $\tau 6.5$ and 7.3 (8 protons: CH—N and Ar—CH—), between $\tau 8$ and 8.7 (8 methylenic and methynic protons); and at $\tau 9.1$ (3 methylic protons).

Tabernaemontanine. $C_{21}H_{26}N_2O_3$. Found: m.p. 206-8° (MeOH); $[a]_D - 52^\circ$ (C = 1, CHCl₃). Required: m.p. 215-6°; $[a]_D - 57.5$ (C = 1, CHCl₃)⁷ i.r., m.s. and NMR⁹ spectra were in full accordance with those reported for authentic tabernaemontanine.

Dregamine. $C_{21}H_{26}N_2O_3$. Found: m.p. $106-8^\circ$ (MeOH); $[a]_D-90^\circ$ (C = 1, CHCl₃); HCl-ide, m.p. $238-40^\circ$ (EtOH); CH₃J-ide, m.p. $211-14^\circ$ (EtOH) (Required: m.p. $106-9^\circ$; $[a]_D-93^\circ$ (CHCl₃); HCl-ide, m.p. $249-50^\circ$; CH₃J-ide, m.p. $215-7^\circ$). i.r. and u.v. spectra were in full accordance with those reported for authentic dregamine. M.s. and NMR spectra provided further identity confirmation. M.s. showed ion signals at m/e 322, 196, 182, 122, which can be interpreted in terms of cleavages as already reported for tabernaemontanine. NMR (in CDCl₃) showed peaks at $\tau 0.5$ (N—H), between $\tau 2.2$ and 3.4 (aromatic

protons), $\tau 6$ (—C—N), whilst 13 protons appeared between $\tau 6.7$ and 7.7 (CH₃O—, shifted H

from its normal $\tau 6.3$ value by the chromatic field which it is pointing toward; CH₃N—; —CH₂—N—; —CH₂CO—; CH—COOR; Ar—CH₂—) and 7 protons between $\tau 8.7$ and 9 (CH₃—CH₂—; CH—; CH—), in accordance with the proposed structure.

Acknowledgements—The authors are indebted to Dr. G. Severini Ricca for measurements of NMR spectra and to Dr. T. Salvatori for mass spectra.

⁶ U. RENNER, D. A. PRINS, A. L. BURLINGAME and K. BIEMANN, Helv. Chim. Acta 46, 2186 (1963).

⁷ M. GORMAN, N. NEUSS, N. J. CONE and J. A. DEYRUP, J. Am. Chem. Soc. 82, 1142 (1960).

⁸ G. Combes, L. Fonzes and F. Winternitz, Phytochem. 5, 1065 (1966).

⁹ M. P. CAVA, S. K. TALAPATRA, J. A. WEISBACH, B. DOUGLAS and G. O. DUDEK, *Tetrahedron Letters* 2, 53 (1963).